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A two-dimensional, semi-infinite tank, closed by a vertical wall a t  one end, is 
initially filled to a certain level with an inviscid liquid at rest. A gate in the lower 
part of the wall is suddenly opened to a region where the gas pressure is greater 
or less than the gas pressure over the free liquid surface in the tank. The liquid 
escapes (or moves inwardly) through the gate under the combined action of 
gravity and the driving pressure differential. The fluid motion, the shapes of the 
two free surfaces, and the discharge through the gate are calculated for small 
times after the opening. 

1. Introduction 
The unsteady motions that occur when a dam suddenly disintegrates, and 

the water in an open reservoir behind the dam escapes, have been calculated for 
the two-dimensional case by Pohle (1952), and the results reported by Stoker 
( 1  957). This problem contains the difficulty of a free-surface boundary condition, 
and the analytical solution is known for small times only. 

In  this paper, a more general problem is treated (see figure l), which differs in 
two ways from that of Pohle. First, the reservoir is replaced by a closed tank, 
such that the pressure over the free surface of the liquid in the tank is either 
greater, or smaller, than the pressure in the space to which the gate communicates; 
accordingly, the liquid motions are produced by a combination of gravity and of 
the pressure differential. Secondly, the entire end wall does not disappear; 
instead, a t  the bottom of the end wall, a gate (whose height is less than that of 
the liquid) is suddenly opened. 

One application of this problem is to the rapid opening or bursting of a gate, 
valve, or pressure-relief disk in a gas-pressurized container of liquid. 

Another application is to the inflation of a limp gas-filled balloon placed in the 
human aorta. The intra-aortic balloon pump is one of the more promising 
methods of temporary left-ventricle assistance for patients in heart failure 
(see Kolff, Moulopoulos & Topaz 1962; McMahon 1969). Since the balloon wall 
is limp, and the gas density inside the balloon is much less than that of the blood 
surrounding the balloon, the outer surface of the balloon is at uniform pressure. 
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This free-surface boundary condition makes the balloon problem somewhat 
like that treated in this paper. In  the gate-opening problem, the free surface 
falls most rapidly adjacent to the end wall of the tank. Correspondingly, when 
an intra-aortic balloon is inflated by applying an excess gas pressure within the 
balloon, the inflation occurs first at  the ends of the balloon in so-called ‘bubbles ’. 
This mode of balloon inflation, which can be modelled at least roughly by the 
gate-opening problem, is undesirable, because it can produce occlusion of the 
aorta and high pressures between the occlusive bubbles, and also because it 
can limit the usable volume displacement of the balloon. 

Gas at p =Ap --------- 

FIGURE 1. Geometry of the problem. 

2. Formulation of the problem 
Figure 1 shows a two-dimensional semi-infinite tank filled to the depth h 

with an inviscid liquid initially at  rest. The gas pressure over the free surface of 
the liquid in the tank is constant and equal to Ap, which may be either positive 
or negative. At time t = 0, a gate of height 1 is suddenly opened at the end wall, 
allowing the liquid to escape into a space where the pressure is zero. 

Our objectives are to determine the pressure distribution, the motion of the 
fluid, the shape and position of the free surfaces, and the flow discharged through 
the gate. As in Pohle’s (1952) treatment, the problem is solved in closed form 
only for small values of the time t. 

Two dimensionless parameters govern the problem: (i) l /h defines the geo- 
metry; and (ii) Aplpgh establishes the relative importance of the imposed pressure 
differential and of gravity in producing the motions. For the problem treated 
by Pohle (1952), these parameters have the particular values Z/h = 1 and 
Aplpgh = 0. We consider here the entire range 

0 6 l/h 6 1 and -m 6 Aplpgh 6 co. 

(i) Governing equations in Lagrangian co-ordinates 

Boundary conditions on free surfaces are expressed most simply in Lagrangian 
co-ordinates. The variables x(a, b;  t )  and y(a, b; t )  denote the co-ordinates at  time 
t of the fluid particle whose initial co-ordinates at the time t = 0 are a and b, 
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while p(a,  b; t )  is the corresponding pressure. The equations of motion in Lag- 
rangian variables are 

( 1 4  

(1b)  

X t t  = -PzlP, 

Ytt = -P2//P - g ,  
where p is the density, g is the acceleration of gravity, and p ,  = aplax, etc. 

(ii) NormaZized variables 

It is convenient to introduce the following dimensionless variables : 

x = 7Tx/2h, Y = ny/2h, 

A = na/2h, B = rrb/2h, D = (+n)(Z/h), 

T = t/(Zh/ng)*, P = ($n)(p/pgh). 

In  the normalization of t ,  it is assumed that gravity is an important factor in 
the fluid motion and the corresponding time scale is therefore chosen as (hlg)). 
If Aplpgh 9 1, on the contrary, the motion is caused mainly by the pressure 
difference and a more appropriate choice of time scale would be (phz/Ap)*; 
(2a)  and (2b)  (which follow) would then be different in form. Note, however, 
that the validity of the results does not depend upon which time scale is used. 

Equations (1 a)  and (1 b) now become 

XpT = -Px, P a )  

Y,, = - Py - 1. (2b)  

On eliminating the partial derivatives with respect to X and Y in (2a )  and (Zb), 
we obtain the equations of motion in the form, 

X T T X A  + (YTT + 1)YA + PA = 0, 

X T T X ,  + (YTT + 1)YB + PB = 0. 

(3a )  

(3b)  

In the Lagrangian description, the two-dimensional equation of continuity 
of an incompressible fluid may be written by setting the Jacobian of the trans- 
formation ( X ,  Y )  -+ (A ,  B)  equal to unity: 

X,Y,-X,Y, = 1. (4) 

(iii) Xeries expansion for  small values of time 

By considering times much shorter than the characteristic time, namely for 
T < 1, a solution of the system of equations (3a), (3b)  and (4) may be sought in 
the form of series expansions in T ,  which are here carried out to terms of order 
T2: 

X ( A ,  B;  T) = A + X(')(A,  B)T + $X(2)(A,  B)T2 + . . . , 
Y ( A , B ; T )  = B+ Y(1)(A,B)T+&Y(2)(A,B)T2+ ..., 

P ( A  , B ; T) = P@)( A ,  B)  + P(S( A ,  B)T + +P2)(A,  B)T2 + . . . . 

(5a) 

(5b)  

( 5 c )  

In  these expressions, X( l )  and Y(l) are the dimensionless initial velocity com- 
ponents; X(z) and Y(2) are the dimensionless initial acceleration components; 
and P(O)(A, B)  is the dimensionless initial pressure field. 

15-2 
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(iv) Initial conditions 
Equations ( 5  a )  and (5 b )  automatically satisfy the initial conditions of displace- 
ment at  T = 0. Since the flow starts from rest, i.e. 

X,(A, B;  0) = YT(A, B;  0) = 0, 

XU) = ycu = 0. i t  follows that 

(v) Governing equations for  X(2) and Y(2) 
Substituting (5a)  and (5 b )  and (6) into (4), and equating the coefficients of T2, 
we get 

The pressure may be eliminated from (3a )  and ( 3 b )  by cross-differentiation. 
Then, by substituting the expansions (5a )  and ( 5 b )  into the resulting 
equations, a.nd considering the coefficients of T2,  we obtain 

(7) xp + Yg) = 0. 

xy- y p  = 0. (8) 

For terms up to T2,  the motion is governed by (7) and (S), which are, respectively, 
the equation of continuity and the equation of irrotationality. 

(vi) Boundary conditions 

For small times at least, fluid particles on the two free surfaces can be assumed 
to remain on the free surface. Defining A P  = ( in)(Ap/pgh) ,  therefore, we set 

P(A,&n;T) = AP, for 0 6 A 6 00. (9) 

In considering the boundary condition for the free surface formed at  the gate, 
we face the difficulty that this boundary is formed not only of particles originally 
at the gate, but also of some particles originally on the wall, at  A = 0, D 6 B 6 in, 
which move out through the gate and become part of the free boundary. How- 
ever, since we restrict the solution to T < 1, the particles do not move very far. 
Thus, we may approximate the true free-surface boundary condition by applying 
it only to those particles originally in the free surface: 

P(0,B;T) = 0,  for 0 6 B 6 D. (10) 

A similar consideration applies to the boundary condition for particles origin- 
ally at  the wall, i.e. A = 0, D 6 B < &. Some of these particles, as mentioned 
above, escape through the gate, and thus do not remain at the wall. But, again 
making an approximation consistent with T < 1, we assume that the particles 
originally at  the wall remain at  the wall. The approximate boundary condition 
is thus 

For particles originally on the bottom, the boundary condition is 

X(0,B;T)  = 0, for D 6 B 6 Qn. (11) 

Y(A,O;T) = 0, for 0 6 A < 00. (12) 

At any finite time, the fluid infinitely far from the wall is at rest; hence, 

X,(co, B;  T )  = YT(c0, B; T )  = 0, for 0 6 B 6 in-. (13) 
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(vii) Boundary conditions for X@) and Y(2) 
The corresponding boundary conditions for X(2)  and Y@) can be obtained by 
substituting (5(u) ,  ( b )  and (c ) )  into the boundary conditions above. Equations 
(1 1)  and (12) give, respectively, 

X(z)(O, 3) = 0, for 0 < B < Qn-, (14) 

Y(2)(A,0) = 0, for O < A < co. (15) 

The substitution of ( 5 )  into (3a)  yields, to the lowest order, 

P y  = - X(”(A, B). (16) 

The term Pg)  is zero, while the term PS’ contributes only terms in T2 and higher, 
which, compared with PS), can be neglected in what follows, since T 4 1. Keeping 
this in mind, differentiating (9) with respect to A ,  and using equation (16), 
we obtain 

X(2)(A,+7r) = 0 for 0 < A < co. (17) 

A similar procedure applied to (36) and (1Ou) gives 

and Y@)(O,B) = - 1 for 0 < B < D. (19) 

From (13), X@)(oo,B) = Y@)(oo,B) = 0 for 0 < B < in. (20) 

It is essential t o  note that the pressure difference Ap has been eliminated 
from the boundary conditions by differentiation. Accordingly, the solutions 
for X@)  and Y@), satisfying the boundary conditions of (14)) (15), (17)) (19) and 
(20)) will not be unique, but will contain an unknown parameter. This parameter 
is determined by reintroducing the condition that the pressure difference between 
the free surface and the chamber downstream of the gate is equal to Ap. In 
dimensionless form, 

AP = JI1‘ V P  - dr, (21) 

where I and I1 are any locations having the following co-ordinates: 

I : A =  0 along O <  B <  D, 

11: B = in along A > 0,  

and dr is the unit vector along any curve connecting I and 11. 

3. Method of solution 
The variables X@) and - Y(2) are conjugate functions satisfying the Cauchy- 

Riemann relations according to  (7) and (8). Therefore, the solution to these 
equations is most readily found by introducing the complex quantities 
2 = A + iB, representing the physical plane; and W ( 2 )  = X@)(A,  B) - i Y@)(A, B). 
By virtue of (7 )  and (8)) W ( 2 )  is an analytic function. 
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Figure 2 shows the boundary conditions in the 2-plane as determined by 
equations (14), (15), (17), (19) and (ZO), together with (7) and (8). Neither X @ )  
nor YC2) is known over the entire boundary of the domain. The problem is of 
Cauchy type, since on some segments a directional derivative of YO is prescribed, 
while on the others Y@)itself is prescribed. It is desirable to convert the boundary- 
value problem to one of Dirichlet type, with one of the two dependent variables 
(we choose Y@)) prescribed over the entire boundary. This may be done by means 
of analytic continuations and conformal mappings. The co-ordinates of corres- 
ponding points in the different complex planes are listed in table 1. 

FIGURE 2. The complex plane 2 = A + iB, showing the boundary conditions. The contours 
of constant Ycz)  are for values of AP such that p > 0 but is not large (see caption for 
figure 12). 

Point 

1 
2 
3, 3' 
2' 
1' 
7' 
6' 
5', 5 
6 
7 
4, 4' 

z 
+ a  

0 
iD  

i(7T-D) 
in 

a,+iT 

in/2 

c z  = exp61 
(see footnote) 

03 

1 
A-1 
0 
0 

- A-1 
-1 
- A  

i 
- 0 3  

t A exp[cosh-l( l/cos D)] .  
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(i) ReJlexion about the line B = 97~ 
On differentiating equation (17) and using the Cauchy-Riemann relations, one 
obtains 

Thus, the solution for Y(2) can be continued analytically beyond the line B = & 7 ~  

by reflexion and a semi-infinite half-strip of height 7~ can be constructed. The 
additional boundary conditions shown in figure 3 are determined by symmetry 
considerations. 

Y$’(A,&n) = o for o < A < a. 

FIGURE 3. The 2-plane, showing analytic continuation across B = =& by reflexion, 
and the corresponding boundary conditions. 

(ii) Mapping from Z-plane to cl-plane 

The Schwartz-Christoffel transformation, 

Cl = cosh-l(cosh Z/COS D), (22) 

now maps the points (0, D) and (0, n - D) of the Z-plane into the points ( 0 , O )  
and (0, n), respectively, of the Cl-plane. The new domain and the corresponding 
boundary conditions are shown on the right half of figure 4. 

(iii) ReJlexion about g1 = 0 

On the boundary segments 3-4 and 4-5, the boundary condition is Y$’ = 0. 
In  the transformed co-ordinates, this becomes 

= 0, for c1 = 0. 
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This condition permits the solution for Y@) in the right half-strip of figure 4 to be 
analytically continued, by reflexion across El the axis = 0, into the left half-strip. 
The boundary conditions on the left half-strip are determined by considerations 
of symmetry. It is seen that the function Y@) is now prescribed over the entire 
boundary of an infinite strip. 

FIGURE 4. Ths gl-plane, showing the boundary conditions for Ycz),  analytical 
continuation across c1 = 0 by reflexion, and contours of constant Y(2) .  

(iv) Mapping to the half-plane <, 
The final step is to map the infinite strip of figure 4 into the upper half-plane of 
figure 5 by means of the tranformation, 

(23) 

The straight line 3-4-5 in the I;,-plane maps into the semicircle of unit radius 
in the c2-plane. The right half-strip of the &-plane maps into the region outside 
the semicircle in the c,-plane, while the left half-strip maps into the region inside 
the semicircle. The physical 2-plane (figure 2 )  is mapped onto the space to the 
right of and above the contour 1-2-3-4 of the <,-plane. Figure 5 shows the appro- 
priate boundary conditions for Y@) in the <,-plane. 

C2 = exp[cJ = exp[cosh-l(cosh Z/cosD)]. 

(v) The sokution function W(<,) 
To determine the formation of the function W(c,) whose imaginary part - Y@) 
satisfies the boundary conditions shown on figure 5 ,  we now introduce singularities 
that are consistent with these boundary conditions. That discontinuities in the 
boundary conditions exist at  points 2, 3, 5 ,  6 in the 2-plane requires that there 
be singularities at those points. Corresponding singularities occur at points 2,3,  
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5 and 6 of the cl-plane and of the cz-plane, as well as at  their reflexions 2', 3', 5' 
and 6'. Special care must be taken on the line segments 2-3-3'-2' and 6-5-5'-6'. 
In order to be able to satisfy (21), one must admit the possibility of singularities 
at  3, 3', and 5 and 5' even though the values of Y(2) on these two lines are con- 
tinuous in the c2-plane. 

a 

FIGURE 5 .  The &-plane, showing the boiindary conditions for YC2). The contours of 
constant Ytz) have arrows which indicate the direction of flow if points 2 and 6' are thought 
of as physical sources, 2' and 6 as physical sinks, and 3 and 5 as physical doublets. 

The appropriate singularities are two sinks of strength 2 located at  c2 = + A-l, 
= + A ,  - A-l, and two doublets of - A, two sources of strength 2 located at 

as yet unknown strength located at  c2 = 1, where 

A = e x p [ c o ~ h - l ( l / ~ ~ ~ D ) ] .  

The complex potential W(c2)  may now be immediately written down as 

The quantity ,u for the doublets will be determined later by means of (21).  

(vi) The solution function W ( 2 )  

By using the inverse transformation c2-+2, as given by (23), (24) is brought 
into the form, 

W ( 2 )  = X(Z)-iY(2) = (l/m)[ln(tanhQ)-ln(tanhR)] 

- 2,u/sinh[cosh-1(cosh2/cos D)], (25) 
where Q = +[cosh-l(coshZ/cos D) - COS~-'( ~ / C O S  D)], 

R = +[cosh-l(cosh Z/cosD) + COS~-'( ~/cosD)]. 
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Then, substituting Z = A + iB into (25 ) ,  and separating the real and imaginary 
parts, we get 

2Q2( LIZ - 1)* cos D cosh A cos B 
a4 cos2 D - Gosh2 A cos2 B ' a2= - 

(27 c) 

9 ( 2 7 4  

1. P - - tan-l[(Rz Qi -4 QAI (4 Qi + Rz QJ1, 
l - 7 T  

P 2 =  - 252' COB D( Q2 cos2 D - Gosh2 A 00s' B)* 
Q4 COS' D - cash' A COS' B 

cosh A cos B )  + (sinh A sin B)z]* 
= 2 ([ (' + cos D cos D 

coshA cosR)' (sinhA sin")']") 
'[(l- cosD + COSD I 

(Q2-  1)i-QsinD 
Q1 = Q - (W - 1)) sin D - SL-l cosh A cos B' 

I cos2 D - (Q-l cosh A cos B)21& 
" = - (W- l)* sin D - C2-l coshA cos B' 

( Q z  - l)* + Q sin D 
R1 = a+ (Qz -  1)iksin D - ! 2 l  cosh A cos B' 

1cos2D- (a-lcoshA c0sB)~1* 
- SL+(n2-1)3sinD-~-1coshAcosB' 

R -  (27 i) 

It may be shown by substitution that the solutions for X"' and Y@) given by 
(26 )  and (27 )  do indeed satisfy the boundary conditions of (14), (15), (17 ) ,  (19) 
and (20) .  

(vii) Determination of p 

It now remains to determine the value of p from (21), using (16), (18), ( 2 6 )  and 
(27 ) .  Since the integral of (21) may be taken along any curve connecting any 
pair of points I and I1 on the two free surfaces, we choose for simplicity the seg- 
ment on the end wall ( A  = 0 )  between B = D and B = tn.  The result of this 
calculation is 

where 

[~-(cosB/cos~))']-*~B, (30) 
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for which the last part of (30) has been obtained using (26) and (27). With the 
transformation sin $ = cos Blcos D,  (30) becomes 

a 2 ( D )  = 2 cos D (1 - cos2 D sin2 $)-* d$ 1: 
= 2(cosD)*K(cosD), (31) 

where K(cos D )  denotes the complete elliptic integral of the first kind, with the 
argument cos D. 

Jlh 
FIGURE 6. The functions gl (D)  andgZ(D) : -, exact solution, (29) and (31) ; ---, expan- 

sion solution, (45), for I/h < 1;  -. -. - , expansion solution, (51), for (1 -l /h) < 1. 

The function g1(D) is determined from (29) with equations (26) and (27) 
by means of numerical integration. The function g2(0), according to (31), is 
obtained from tables of elliptic integrals. Table 2 lists numerical values of 
91(l/h),  while figure 6 gives a1 and 92 graphically as functions of llh. With these 
and (28), one may compute the doublet strength for arbitrary values of AP 
and D :  

We see that ,u is a linear function of AP. 
P(AP,D) = (1/92)W-91). (32) 

(viii) The functions P and II 
The solutions for X(2) and Y(2)  are now completely determined. Examination of 
(26) and (32) shows that X(2) and Yc2) may be brought into the forms 

X(2) = - r x ( A ,  B ,  D )  - (Ap/pgh) * IIx(A, B, D) ,  ( 3 3 4  

YC2)= -I',(A,B,D)-(Ap/pgh)- U,(A,B,D). (33b) 
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The functions rx, ru represent the influence of gravity, while II,, lIp represent 
the influence of the driving pressure difference Ap. That the motions a t  small 
time due, respectively, to gravity and to the pressure differential are linearly 
additive follows of course from the linearity of the governing equations (7)  and 
(8) and of the boundary conditions, including (21). We observe, however, that 
the additive property of the pressure-induced and gravity-induced motions is 
not generally valid: it comes about in the present case, first, beoause the fluid is 
assumed initially at  rest, and, second, because we consider terms in the displace- 
ment only up to order T2.  

tlh 0 0- 1 0.2 0.3 0.4 

- 9 1  $77 1.1471 0.8668 0.6446 0.4639 

Zlh 0.5 0.6 0.7 0.8 0.9 1 .o 
-g1 0.3203 0.2008 0.1121 0.0497 0.0124 0 

TABLE 2 

4. Results and discussion 

ponents are respectively given by 
We first note that the physical displacement, velocity, and acceleration com- 

AX = (9t2/2)X(2), AY = (gt2/2)Y@); ( 3 4 4  

Thus, X O  and Y(2) represent the physical displacements scaled to g t 2 / 2 ,  the physi- 
cal velocity components scaled to gt, and the physical acceleration components 
scaled to the acceleration of gravity. 

(i) Range of validity 

The solutions for the acceleration field, given by (26) and (27) ,  and for the pressure 
field, given by (1.6) and (18), are exact only at t = 0,  when the gate opens. 

Because of the approximations used in the boundary conditions and of the 
necessity of rapid convergence of the series of ( 5 ) ,  the solutions for the displace- 
ment and velocity components given by (33)  and (34) are approximately correct 
only up to values oft  for which the physical displacements are small compared 
with the physical dimensions of the problem. 

1, so that the motion is dominated by the pressure differential, the 
same remarks apply. In that case, however, the magnitude of the time, up to 
which the displacements and velocities are good approximations, is determined 
by the condition that T , / ( A P )  4 1; rather than, as in the case of gravity- 
dominated motions, that T < 1. 

If AP 
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When gravity is absent or negligible, A P + m  From ( 3 2 ) ,  then, p z AP/g2 ,  
and p+m. Choosing XC2), for example, ( 2 6 a )  gives Xc2) r pa, z az * A P / g Z .  
The quantities gXt2) and gY@) appearing in equations (34) may therefore be 
replaced by 

which are the convenient forms for AP 9 1. 

(ii) Values of X @ )  and Y(2) at the boundaries 

A general picture of the displacement, velocity and acceleration fields may be 
gained from a presentation of the values of X(2) and Y(2) at the four boundaries. 
These are (1) the free surface (FS) above the liquid in the tank, where b = h, 
( 2 )  the end wall (W), where a = 0, Z 6 b 6 h, ( 3 )  the free surface at the gate 
opening (G)  through which the liquid escapes, where a = 0, 0 6 b 6 I ,  and (4) 
the bottom (B) of the tank, where b = 0. In  particular, the displacements of 
the two free surfaces are proportional to the values of Ygk and Xg). 

In  the formulas and graphs that follow, the respective contributions of gravity 
and of the pressure differential to X(2)  and Yc2) are, according to (33 ) ,  presented in 
terms of the appropriate functions I? and IT at the four boundaries. For con- 
venience, we employ in the graphs such quantities as a/h, b/h and l/h, rather than 
A ,  B, and D. 

(a) The free surface in the tank: (FS) : A > 0, B = in. Here X$?k = 0, rx, FS = 0, 
and ITx,Fs = 0, while 

ITI,,FS = n/g2(  1 +sinh2A/cos2D)*. (37 )  

Figure 7 shows the functions r,, FS and ITI,, FS plotted against a/h  for several 
values of the gate-opening parameter Z/h. The values of rp, Fs are less than unity, 
indicating that gravity alone cannot produce at  the free surface accelerations 
as large as gravity, except for the limiting case. llh = 1, where the surface 
accelerates downwards with the magnitude g at the point a /h  = 0. 

(b)  The  end wall (W): A = 0, D 6 B 6 in. Here X# = 0, rx,w = 0 and 
IIx,w = 0. Since Dhe fluid horizontal acceleration X@) vanishes both on the end- 
wall and the free surface, it follows that YC2) = i W ( 2 )  is a function of 2 on these 
boundaries. Therefore, the values of r y  and IT, at  the wall may be immediately 
deduced by substituting 2 = iB in place of 2 = A + i 7 ~ / 2  in (36 )  and (37 ) .  

( 3 8 a )  
l?y,w = ;tan-l 2 tan D 2% 

I I ~ , ~  = 4g2( 1 - C O ~ Z  B/COS~ D)*. (38b)  

Figure 8 shows these functions plotted against the abscissa (b  - l ) / ( h  - I ) .  
Except for the limiting case Z/h = 1 (which is singular and for which = 1, 
ITp,w = m), both sets of functions go to infinity at the lip of the gate where 
b -+ 1. This corresponds to the strong transformed-doublet singularity at  b = 1. 



238 W .  S. Chiu, M .  Y .  Juffrin and A .  H .  S h p i r o  

Because of this singularity, the value of Y(2) changes discontinuously from 
-mto  - l a t b = l .  

Both sets of curves have zero slope at b = h, indicating that the vertical accelera- 
tion on the end wall is nearly constant over the region close to the free surface. 

4.0 

n 
? 

a 
F: m 

d 
m 

d 
k 

FIGURE 7. 

1 .o 

0.5 

0.1 
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aIJL 
The functions rp and IIp for the free surface in the tank, 

(36) and (37) : - , nP,.,; ---, rp.RS. 
as given by 

Withgravityalone, thecurvesof crossunityatabout (b-Z)/(h-Z) 0.25; 
hence, above the crossing point the downward vertical acceleration is less than 
g ,  below the crossing point it is greater than g. 

( c )  The gute (G):  A = 0, 0 < B 6 D.  Here YE) = -1, ry,G = - 1 ,  and 
I1 y, = 0,  while 

rX, = In 1 1 - cos B sin D + (1 - cos B)(cos2B - cos2D)& 
sin B( 1 - cos B )  

- 291/92[(cos2B/cos2D) - 11% (39a) 

(39 b)  

2 [  

II,,G = n/92[(cos2B/cos2D) - 119. 
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These functions are plotted against b/l in figure 9. Except for the singular 
case l/h = 1, r x , G  goes to infinity at  both b/l = 0 and b/l  = 1 ; i.e. gravity produces 
infinite horizontal accelerations at  both the bottom and at  the lip of the gate. 
Between these limits, r x , G  has a minimum, whose magnitude is of order unity 
except for values of l/h near zero or unity. The function rIx,G is finite at  the 
bottom, b/l  = 0, but becomes infinite at  the lip of the gate, bll = 1. Due to the 
singularity at the lip of the gate, the value of X(2)  changes discontinuously there, 
from either a finite or infinite value, to zero. 

0 0.5 1.0 

(b  - W ( h  - 4 

-, , w ;  ---, r=,.w. 
FIGURE 8. The functions I'p and IIp for the end wall, as given by (38) : 

(d) The bottom (B): A 2 0, B = 0. HereYg) = 0,  r y , B  = 0,  and IIy,B = 0. 
Again the horizontal acceleration on the bottom may be simply deduced from 
that at  the gate. At the gate, X(2)  = W(iB) - i; while, on the bottom, X(2) = W ( A ) .  
Thus, the value of Xt2) at the bottom is obtained by substituting A in place of 
iB in (39) and adding i. The results are 

1 2 cosh A sin D - 1 + (cosh A - l)(cosh2A - cos2D)* 
sinhA(coshA - 1) FX,B = ?l -q 

- 25BJ5B2[(cosh2A/cos2D) - 1]*, (40a)  

IIX,B = m/5B2[(cosh2A/cos2D) - 114. (40b) 
Figure 10 shows these functions. The value of FX,B becomes infinite as a/h+ 0, 

showing that the horizontal acceleration due to gravity is infinite at  the inter- 
section of the bottom and the gate. At a/h = 0, nx,B is finite and has zero slope; 
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hence the horizontal acceleration on the bottom due to  pressure differential is 
nearly constant near the gate. The values of IIx,B at a/h = 0 agree with the values 
of IIIx,G a t  bll = 0 on figure 9, thereby indicating that the horizontal acceleration 
on the bottom does not change discontinuously at a = 0. 

10 

5 

0.1 

b/E 

-, nx,a;  --- r H , G ) '  

FIGVRE 9. The functions I?= and IIx for the gate, as given by (39) : 

(iii) Conditions far from the end wall and gate: A > 1 

For A > 1, the results for the free surface and the bottom have the following 
limiting forms : 

e-a, ( 4 l a )  

and 

2n cos D 
e-A, 

3'2 
IIY,FS = 

4 g 1  cos D 
e-A, 

9 2  
FX,B ,z - 

2n cos D 
IIx,B ___ e-a .  

3 2  

On both boundaries, therefore, I' and II decay as e-A. On figures 7 and 10, 
accordingly, which are semi-logarithmic, all the curves approach straight-line 
asymptotes having the same slope. Equations (41) and ( 4 2 )  may be used as a 
guide in extending these curves, and are also quite accurate when A > 2. 
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Far from the end wall and gate, one might surmise from the geometry that 
the flow is one-dimensional, as in the case of a steady-flow discharge from a 
pressurized reservoir through a gate. But this is not true for the unsteady flow 
considered here. Indeed, it cannot be true, owing to the inherent differences in 
the boundary conditions at  the free surface and the bottom, as shown:in figure 2. 

lor--  

0 0.5 

alh 

1.0 

FIGURE 10. The functions rx and IIx for the bottom, as given by (40) : 
-, nx,B; - - -9  r X , B .  

(iv) Rate of discharge through the gate 

The volume flow rate 0 (per unit width normal to the paper) escaping through 
the gate may be calculated either as the rate of decrease of the liquid volume 
contained in the tank, or as the integrated volume flux rate through the gate. 
Choosing the former method, we may write 

(&r)sg-*h-90 = - ( d / d T )  f m  (YFS-BFS)dA, 
n 

16 
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Thus increases linearly with time, and is made up of two additive terms, one 
representing gravity, the other the pressure differential. The two integrals of 
(43) ,  which depend upon D, must be found by numerical integration. They are 
shown in figure 11. For small values of the gate opening ratio, Z/h, both curves 
coincide and are linear with ln(Z/h). The gravity integral remains roughly linear 
with ln(Z/h) over the entire range, whereas the pressure integral goes to infinity 
as 1lh-t 1. 

0.01 0.1 1 .o 
Elh 

FIGURE 11. The flow rate integrals of (43): - , exact solutions; ---, expansion 
solutions, (50), for Z/h 4 1. 

(v) The limit of small gate opening, D-t 0 

It is convenient to develop the limiting forms of the solution functions for very 
small gate openings, D < 1. This is not only because certain of the r’s and II’s 
go to zero, but also because the formulas take simpler explicit forms as D+ 0. 
In  this limit, the sources and sinks cancel, and only the doublet survives in the 
c,-plane. The complex potential is approximated by 

W ( 2 )  = X@)- i Y@) - 2,u/sinh 2. (44)  

(45a) 

(45b) 

(a) The,functions gl(D) and 9,(D).  Expansions of the terms in (29) and (31 )  
lead $0 the results: gl = - in - ( 2 / n ) ~  In QD + D + . , . , 

9, = - 2 In D + 4 In 2 + S P l n  D + . . . . 
These show that, as D-t 0, g1 --f - in and g2 -+ co. Therefore the doublet strength 
,u approaches zero unless AP-tco. The dashed curves on figure 6 represent the 
approximations of (45a) and (456). They are very close to the exact results up 
to l/h = 0.3. 
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(b )  The functions I' and FI. We give here the limiting forms for D < 1 : 

Note that the values of I? and II shown above not only go to zero as D+ 0, but 
also become identical for D < 1. For the acceleration at  the gate, both B and D 
must be assumed < 1 in this case. The limiting forms are 

rX,G = - n/2(Dz - B2)*1nD- (6/7r) In B, 

IIx,G = - 7~/2(D2- B2)* In D + O( l / h D ) .  
(49a) 

(49b) 

It is clear that I?X,G and I I x , G + ~  as D+O. Although the dominant term in 
the two expansions is the same, the difference (r- II) is positive and goes to 
infinity as B + 0. 

(c) Discharge throug~ the gate. The limiting forms of the flow integrals of (43) 

These are graphed by dashed lines in figure 11, where it is is seen that close 
agreement with the exact solution is obtained up to l/h 0.4. 

(vi) The limit of large gate opening, D + in- (or l /h + 1) 

Here it is convenient to define the small parameter 8 = (in) - D. Expansion 
of equations (29) and (31) in 6 then yields 

These are shown by dot-dash curves on figure 6, and agree with the exact values 
quite well for l /h  > 0.4. 

The limiting forms of the acceleration functions at the free surface are 

(sin: A )  + f ( - sinh A cosh 2A + ... ) (52a) 
2 

= - t a r 1  - 
7T 

&,FS = &['-;(;+=)I+.... 1 

As expected, the first term of the gravitational contribution, equation (52a), 
is identical with the result given by Stoker (1957) for the solution of the dam- 

16-2 
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breaking problem. The solution for the pressure-differential contribution, (52 b ) ,  
is meaningful only until such time as the free surface in the tank joins the free 
surface at the gate. Beyond that, the pressure differential Ap vanishes, and the 
present solution cannot be continued because the boundary conditions are 
different in form. 

Some additional remarks may be made here concerning the case D = &I-, i.e. 
the dam-breaking problem, for which there is no wall. This limit of the more 
general solution given in this paper is singular, in the sense that the boundary 
condition X@)  = 0 at A = 0,  B = +T changes discontinuously as D -+ in. The 
singular nature of the case D = in (or Z/h = 1) has already been mentioned in 
connexion with the curves of figures 7-9. In figure 7 ,  the curves for l /h = 1 show 
different behaviour from all the others as a/h+O. In  figure 8 ,  IIp,w = co for 
l /h = 1. In  figure 9, as b/l+ 1, rx, goes to + co for all values of Z/h except l/h = 1, 
for which it goes to zero. 

(vii) Are Ap and pgh equivalent? 

While the gravity term pgh may be thought of as a driving pressure difference, 
it  is not equivalent to an equal pressure differential Ap. The reason is that 
gravity acts uniformly throughout the bulk of the fluid, whereas Ap is established 
uniformly only at  the two free surfaces. That their effects are different is evident 
from figures 7, 8 and 10, where the curves for I? and II differ substantially from 
each other if l/h > 0.05; and from figure 9, where the curves are inherently 
different in form. 

In  the limit of l/h+ 0, however, with the exception of the gate, the curves for 
J? and II approach each other in figures 7 , s  and 10. This coincidence of I’ and ll 
is confirmed by (46), (47) and (48). If the gate opening is very small, therefore, a 
pressure differential alone, of magnitude Ap = pgh, produces the same motion 
as gravity alone, except in the vicinity of the gate. Conversely, a negative pres- 
sure differential, of magnitude Ap = -pgh, exactly balances the effect; of gravity 
far from the gahe if llh < 1. 

Near the gate, as shown by figure 9 and (49), F and II are essentially different, 
even as l/h -+ 0. At this limit, the values of X(2)  and Y(2) are so small as to be neg- 
ligible throughout most of the fluid; the situation then approximates hydro- 
static equilibrium, and thus Ap and pgh produce virtually equivalent effects. 
Near the gate, however, dynamic effects persist for 1lh-t 0, so that Ap and pgh 
are not equivalent. 

(viii) Contours of constant Y@) 
Five different types of solution exist, depending upon the magnitude of ,a. 
Since 92 > 0 and 9l < 0, (32) shows that p > 0 when AP is either positive or 
only mildly negative. For sufficiently large negative values of AP, p takes on 
negative values. 

(a)  Positive values of p. Figure 2, and the corresponding mappings of figures 4 
and 5, show the contours of constant YC2) when p is positive but not large. The 
value of - Y(2) on the free surface is everywhere less than unity (i.e. the accelera- 
tion is less than that of gravity), but reaches and exceeds unity on the end 
wall. 
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( b )  Figure 12(a) corresponds to a case with a very large positive value of p. 
The singular curves of Y@) are different in form from those of figure 2. Over part 
of the free surface, - Y@) > 1,  and the vertical acceleration exceeds that of 
gravity over the entire end wall. 

( c )  Negative values o f p .  Figures 12(b), ( c )  and ( d )  show the Y@) contours for 
negative values of AP (and also of p) that are increasingly large. The three cases 
illustrate the different types of singular curves that occur. 

laced free surface 

(4 (4 
FIGURE l 2 . t  Schematic sketches showing contours of constant Ytz) and displaced shapes 
of free surfaces. See also figure 2. (a )  p > 0,  largo lpl. The free surface shapes pertain to 
any positive value of p. The YczJ contours pertain to large positive values of p, while figure 2 
shows the Ycz) contours for small values of p. ( b ,  c, d )  Successively larger negative values of 
p :  ( b )  p < 0, small lpl; (c) p < 0, medium lpl; ( d )  p < 0, large lpl. 

t The ranges of applicability are as follows : 
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(ix) Shapes of free surfaces 

Figure 12 also shows schematically the different kinds of free-surface displace- 
ments that can occur, as determined by Ygk for the liquid surface in the tank, 
and by X $ )  for the surface a t  the gate. 

(a )  Positive values of p. As long as p is positive, no matter how large or how 
small, the free surfaces are displaced as in figure 12 (a).  Within the tank, the free 
surface everywhere accelerates downward, increasingly so near the end wall; 
somewhat surprisingly, the slope at  the end wall is zero (one might have guessed 
otherwise). At the gate, X g )  = -m at both b = 0 and b = 1 .  Accordingly, the 
jet always squirts out horizontally. There is always a minimum in -Xg) and 
thus the displaced free surface appears as in figure 12 (a).  

(b) Negative values of p. Figures 12 (b), ( c )  and ( d )  illustrates schematically the 
successive varieties of free-surface displacement that occur as p takes on larger 
and larger negative values. Two features are particularly interesting. The first 
is that, at  a = 0, b = 0, X(2)  = -m no matter how large a negative value of A P  
is applied. Thus, as seen in figure 12 (d) ,  a small amount of liquid will always issue 
from the tank near the bottom. This is of some practical importance when a 
pressure difference is used as a means of averting the escape of dangerous liquids 
stored in a tank. The second is that, just under the lip of the gate (a  = 0, b = 1- ) ,  
X(2) = +m; while just above the lip of the gate (a = 0, b = if), Y@) = +m. 
Thus, a double free surface is formed, with its leading edge having a cusp. The 
latter would in practice be rounded by surface tension. 

(x) Remarks on a more general geometry 

The procedures used for solving the problem of this paper point to the method 
of solution for a more general problem : that in which the gate is not in the bottom 
of the end wall, but somewhere between top and bottom. An additional geo- 
metric parameter now appears. By means of combinations of analytical continu- 
tions and of Schwartz-Christoffel transformations, the value of Y@) can be 
prescribed on the horizontal axis of a half-plane, as in figure 5. There will now be 
four doublets present, corresponding t o  the singularities a t  both the upper and 
lower sides of the gate, and to their corresponding reflected singularities. That 
two different doublet strengths, pa and pb, must now be determined causes no 
inherent difficulty, since the pressure boundary condition of (21) can be applied 
twice: one going through the doublet pa, the second going through the doublet pb. 
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